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Introduction. In a preparatory essay1 I looked comparatively to the classical and
quantum dynamics of unobstructed free fall. We look now to the consequences of
erecting an impenetrable barrier at the coordinate origin, the intended effect
of which is render inaccessible the points with x < 0. We might consider
that we are studying motion in the presence of the idealized potential shown

Figure 1: Idealized “bouncer potential,” which might be notated

V (x) =
{

mgx : x � 0
∞ : x < 0

in the figure, but in point of fact we will find it usually more convenient to
use (not the language of potential but) the language of constraint to model the
action of the barrier.

1 “. . . dynamics in a uniform gravitational field: A. Unobstructed free fall”
(August ). This is the “Part A” to which I will refer in the text. I will
write, for example, page 31A, Figure 4A and (57A) to cite pages, figures and
equations in that source.
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We will draw freely upon results developed in Part A, but recognize that
many of the issues central to the physics of unobstructed free fall are rendered
irrelevant by the presence of the barrier: translational invariance is broken, and
so is Galilean covariance (the inertial observer who we see to be in motion sees
a moving barrier, and the accelerated/falling observer who sees the “ball” to
move freely while between bounces sees an accelerated barrier . . . or “bat”).
The issues destined to assume prominence in the following discussion will, for
the most part, be new issues—issues for which our study of unobstructed free
fall has not specifically prepared us.

The problem of unobstructed free fall is widely considered to be “too
simple” to merit close attention, and has given rise to a very thin literature.2 On
the other hand, the “bouncer problem” and its close relatives—especially the
quantum mechanical versions of those problems—has an established presence in
the textbooks,3 and has recently inspired a small flurry of activity . . . mainly by
condensed matter theorists,4 who write in response to the remarkable fact that
Bose-Einstein condensates are seen in the laboratory to fall, and even to bounce.5

2 The most important recent contribution to that literature is M. Wadati,
“The free fall of quantum particles,” Journal of the Physical Society of Japan
68, 2543 (1999). Wadati borrowed some of his methods from Landau & Lifshitz,
Quantum Mechanics: Non-relativistic Theory (), §24.

3 See S. Flügge, Practical Quantum Mechanics (), pages 101–105. It is
with special pleasure that I cite also the brief discussion that appears on pages
107–109 in J. J. Sakurai’s Modern Quantum Mechanics (revised edition ).
He and I were first-year graduate students together at Cornell in –,
and used to play flute and double bass duets together in the physics library
in dead of night. The contempt for theoretical fine points, the preoccupation
with the physics of physics that was then (and remains) a tradition at Cornell
. . . caused me to flee to Brandeis, but was precisely what John (who had spent
his undergraduate years at Harvard, in the shade of Schwinger) sought. In
 he left the University of Chicago to rejoin Schwinger at UCLA. He died
in  while visiting CERN (from which I had departed in ), decades
before his time. Sakurai’s interest in the role of gravity in quantum mechanics
was so well developed (see his pages 126–129) that it was probably no accident
that he selected the bouncer/wedge problems to illustrate the practical appli-
cation of the WKB approximation. The upshot of Sakurai’s discussion is posed
as Problems **8.5 and *8.6 in Griffiths’ Introduction to Quantum Mechanics
().

4 See J. Gea-Banacloche, “A quantum bouncing ball,” AJP 67, 776 (1999),
which provides an extensive bibliography, and which inspired valuable
comments by Olivier Vallée (AJP 68, 672 (2000)) and David Goodmanson
(APJ 68, 866 (2000)). I am indebted to Tomoko Ishihara for bringing those
papers to my attention.

5 Google returns thousands of references to (for example) “atomic mirror”
and “atomic trampoline.” The interesting site http://www.iqo.uni-hannover.
de/html/ertmer/atom optics/bec/bec 06.html#1 is typical, and provides a
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Some of the effects to be described in these pages—effects that become evident
only if m is much smaller than the mass of a “ball of condensate”— lie, however,
still beyond the reach of experimentalists (but may not for long!).

classical dynamics of a bouncing ball

1. Bouncing ball basics. A ball lofted from x = 0 with (kinetic) energy E will
rise to height

a = E
mg (1)

If dropped at time t = 0 from height a it will execute its (perfectly elastic)

1st bounce at time t1 = 1
2τ

2nd bounce at time t2 = t1 + τ = 3
2τ

3rd bounce at time t3 = t2 + τ = 5
2τ

...

where from Galileo’s a = 1
2g

(
1
2τ

)2 if follows that

bounce period τ =
√

8a/g =
√

8E/mg2 (2)

The E-dependence of τ means that bouncing is an anharmonic periodic process.

If we start the clock at the time of a bounce, then the free-fall flight up
until the time of the next bounce can be described

x(t) = 1
2g t(τ − t) : 0 < t < τ (3.1)

To notate the “bounce-bounce-bounce. . . ” idea we might write

x(t) = 1
2g

∑
n

[t − nτ ][(n + 1)τ − t] · UnitStep[[t − nτ ][(n + 1)τ − t]] (3.2)

but there is seldom reason to do so.6 Between bounces the velocity decreases
uniformly

ẋ(t) = 1
2gτ − gt : 0 < t < τ (4.1)

so we have

ẋ(t) =
∑

n

[
1
2gτ − g(t − nτ)

]
· UnitStep[[t − nτ ][(n + 1)τ − t]] (4.2)

which describes a sawtooth (Figure 6).

(continued from the preceding page) reference to K. Bong et al , “Coherent evolution
of bouncing Bose-Einstein condensates,” Phys. Rev. Lett. 83, 3577 (1999).
I am indebted to John Essick for this information.

6 Such a command was, however, used to create Figure 2.
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1 2 3 4

Figure 2: Flight of a bouncing ball, computed from (3.2) with the
parameters g and τ both set equal to unity.

1 2 3 4

Figure 3: Time-derivative of the preceding figure, computed from
(4.2) : the velocity decreases linearly between bounces, and reverses
sign at each bounce.

2. Fourier analysis of the motion of a classical bouncer. In some applications it
proves more convenient to suppose that we have dropped the ball at t = 0; i.e.,
to start the clock at the top of the hop. In place of (3.1) we would then write

x(t) = 1
2g( 1

2τ + t)( 1
2τ − t) : − 1

2τ < t < + 1
2τ (repeated periodically)

which—as was remarked already by Gea-Banacloche4—yields naturally/easily
to Fourier analysis:

= B0 +
∞∑

p=1

Bp cos
[
2pπ(t/τ)

]
(5.1)
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Figure 4: Graphs (above) of the classical bouncing ball trajectory
that during the central bounce − 1

2τ < t < + 1
2τ is described

x(t) = 1
2g( 1

2τ + t)( 1
2τ − t)

[in constructing the figure I set g = τ = 1] and (below) the sum of
only the first 10 terms of the Fourier representation (5) of x(t). To
all appearances, the inclusion of higher-order terms serves only to
sharpen detail “at the bounce.”

Here7

B0 = (1/τ)
∫ + 1

2 τ

− 1
2 τ

x(u) du

= 1
12gτ2

= 2
3a (5.2)

= time-averaged value of x(t)

7 Compare K. Rektorys (editor), Survey of Applicable Mathematics (),
page 709.
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and

Bp = (2/τ)
∫ + 1

2 τ

− 1
2 τ

x(u) cos
[
2pπ(u/τ)

]
du

= −(−)p 1
2p2π2 gτ2

= −(−)p 4
p2π2 a (5.3)

The remarkable efficiency of (5)—which can be written

x(t) =
[

2
3 + 4

π2

{
1
12 cos

[
2π t

τ

]
− 1

22 cos
[
4π t

τ

]
+ 1

32 cos
[
6π t

τ

]
− · · ·

}]
· 18gτ2

—is indicated in Figure 4. But in Figure 5 I look to

ẋ(t) = − 1
π

{
1
12 sin

[
2π t

τ

]
− 1

22 sin
[
4π t

τ

]
+ 1

32 sin
[
6π t

τ

]
− · · ·

}
·gτ (6.1)

ẍ(t) = −2
{

1
12 cos

[
2π t

τ

]
− 1

22 cos
[
4π t

τ

]
+ 1

32 cos
[
6π t

τ

]
− · · ·

}
·g (6.2)

with results that serve to underscore some of the subtle limitations of the Fourier
representation. The lower part of Figure 5 acquires special interest from the
following circumstance: our bouncing ball moves as described by an equation
of motion of the form

mẍ(t) = −mg + F ·
∞∑

n =−∞
δ(t − 1

2τ + nτ)

where in order to achieve the right impulse (abrupt change of momentum) at
each bounce we must set F = 2mgτ .8 The implication is that we can write

Dirac comb ≡
∞∑

k=−∞
δ(t − 1

2τ + kτ) = 1
τ

{
1
2 +

∞∑
p=1

(−)p 1
p2 cos

[
2pπ t

τ

]}
(7)

but it is the lesson of the figure that truncated versions of the sum at right
are not good for much! The Fourier representation (7) of the Dirac comb may,
nevertheless, prove useful (indeed: may already be known) to engineers with
“tick, tick, tick, . . . ” on their minds.

3. Probabilistic aspects of the bouncing ball problem. We proceed from the
idea that the probability Q(x)dx that a bouncing ball will be found in the
neighborhood dx of x (0 � x � a) is the same as the fraction of the time that
the particle spends in that neighborhood. Working from Figure 6, we have

Q(x)dx = Q(x) 1
2g(τ − 2t)dt = 2dt

τ

giving
Q(x) = 4

gτ(τ − 2t)

8 From this point of view, τ controls the strength of the impulsive kick, which
determines the height of the flight, and shows up finally as the period.
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Figure 5: Shown above: the result (compare Figure 3) of retaining
the first 30 terms in the Fourier representation (6.1) of ẋ(t). Notice
the overshoot (“Gibbs’ phenomenon”) at the beginning and end of
each descending ramp. The Fourier representation of the sawtooth
waveform is, of course, an device familiar to engineers. Below:
the result of retaining the first 30 terms in the representation (6.2)
of ẍ(t). The interesting feature of the figure is that it is a mess:
30 terms is far too few to capture the exquisitely fine detail written
into the design of the “Dirac comb” that, for the reason explained
in the text, we might have expected to see.

But 2t(x) = τ ±
√

(gτ2 − 8x)/g so

Q(x) = 1

2
√

1
8gτ2

√
1
8gτ2 − x

= 1
2
√

a
√

a − x
: 0 � x � a (8)

This “ballistic distribution function” is plotted in Figure 7. Calculation confirms
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a

dx

dt τ

Figure 6: Construction used to compute Q(x).
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Figure 7: The “ballistic distribution function” Q(x), displayed as
a function of the dimensionless variable x/a. The singularity at
x = a reflects the tendency of ballistic particles to linger at the apex
of their flight.

that (as expected/required)

∫ a

0

Q(x) dx = 1

On the other hand, momentum decreases uniformly during the course of a flight
(see again Figure 3), ranging from +1

2mgτ down to − 1
2mgτ , so the momentum

distribution P (p) is flat on that interval, where it has constant value (mgτ)–1.
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It follows from (8) that

〈x1〉 = 2
3a

〈x2〉 = 8
15a2

〈x3〉 = 16
35a3

...




(9)

Later we will want to compare these with their quantum counterparts.

4. Action per bounce. At (9A) we found the free fall action function to be given
by

S(x1, t1; x0, t0) = 1
2m

{
(x1 − x0)2

t1 − t0
− g(x0 + x1)(t1 − t0)− 1

12g2(t1 − t0)3
}

(10)

Since between one bounce and the next our bouncing ball is in free fall, we
might expect to have

S(0, τ ; 0, 0) = value of the bounce-to-bounce action

= 1
2m

{
− 1

12g2τ3
}

= − 1
2 · 1

12mg2τ3 (11)

But we can approach this issue also from another angle:

Between one bounce and the next the (ballistic) phase flow can be described

x(t) = 1
2g t(τ − t)

p(t) = 1
2mg(τ − 2t)

Eliminating t between those equations gives

x = a[1 − (p/p0)2] with p0 ≡ 1
2mgτ (12.1)

which inscribes on phase space a parabola that opens to the left (Figure 8).
Equivalently

p(x) = p0

√
1 − (x/a) (12.2)

It follows that the area of the region bounded by (12.2) can be described

enveloped area A =
∮

p dx = 2
∫ a

0

p0

√
1 − (x/a) dx

= 4
3 p0a

= 4
3 · 1

2mgτ · 1
8gτ2

= 1
12mg2τ3 (13)

It is a striking fact—and a fact for which I can account only imperfectly—
that (11) and (13) disagree, by a sign and a factor. It is no doubt significant that
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p0

a

Figure 8: The phase space representation of bounce-bounce-bounce
consists of going round � and round the parabolically bounded region
shown. We have interest in the area of that region.

the argument that gave (11) contains no provision for a contribution to the
action by the (instantaneous/impulsive) bounce process itself. Nor is it easy
to see how, by physically convincing argument, this defect might be remedied.
Moreover, the simpler case of a particle-in-a-box we also obtain disagreement:
let the box be defined 0 � x � " and use (10) to recover (in the limit g ↓ 0) the
familiar free particle action function

Sfree(x1, t1; x0, t0) = 1
2m

(x1 − x0)2

t1 − t0

The back-and-forth oscillation of a confined particle with conserved momentum
p has period τ = 2m"/p. The argument that gave (11) now gives

action per cycle = Sfree(", 1
2τ ; 0, 0) + Sfree(0, τ ; ", 1

2τ)

= 2m"2/τ

= p"

while ∮
p dx = 2p"

These results have the same sign, but again differ by a factor.
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x1

x0

t0 t1

Figure 9: Two of the distinct bounce paths that link a specified
pair of spacetime points. Implementation of Feynman quantization
program would require us to ennumerate the totality of such paths,
in the general case.

5. Multiple paths & the path ennumeration problem. It is clear from figures such
as the one shown above that, in general, a finite multitude of bounce paths link
(x0, t0) −→ (x1, t1). To ennumerate the members of that population one has to
discover all the values of τ and δ such that (see again (3.2))

x(t; τ, δ) ≡ 1
2g

∑
n

ξ(t − nτ + δ) · UnitStep[ξ(t − nτ + δ)]

ξ(t) ≡ t(τ − t)

conforms to the endpoint conditions

x(t0; τ, δ) = x0 and x(t1; τ, δ) = x1

Though the problem appears on its face to be difficult (intractable?), some
key features of its solution can be obtained fairly easily:

direct path The specified endpoints can in every case be linked
by the 0-bounce direct path (x0, t0) −−−→

0
(x1, t1) that we found at (4A) can

be described

x(t; x1, t1; x0, t0) =
{x0t1 − x1t0

t1 − t0
− 1

2gt0t1

}
+

{x1 − x0

t1 − t0
+ 1

2g(t0 + t1)
}

t − 1
2gt2 (14)
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In the present application it can be assumed not only that t1 > t0 but also that
x0 and x1 are both non-negative. From (14) it follows that x(t; x1, t1; x0, t0) = 0
at times

t± = 1
2 (t0 + t1) + g–1 x1 − x0

t1 − t0
±

√
complicated expression

The arc therefore reaches its apex at

tapex = 1
2 (t+ + t−) = 1

2 (t0 + t1) + g–1 x1 − x0

t1 − t0

at which time the ball will have ascended to height

a = x(tapex; x1, t1; x0, t0)

=
(x1 − x0)2

2g(t1 − t0)2
+ 1

2 (x0 + x1) + 1
8g(t1 − t0)2 (15)

The associated period can, by (2), be described

τ2 =
[2(x1 − x0)

g(t1 − t0)

]2

+ 4g–1(x0 + x1) + (t1 − t0)2 (16)

The same result could, with much greater labor, have been extracted from

= (t+ − t−)2

Notice that τ � (t1 − t0), with equality if and only if x0 = x1 = 0. Notice also
that the expressions on the right sides of (15) and (16) become singular in the
limit g ↓ 0, and that this makes physical good sense.

single -bounce path It is perfectly clear that in the special case g = 0
there are always exactly two paths (x0, t0) −→ (x1, t1): a direct path and a
“reflected” path that can be construed as a direct path to the image (−x1, t1)
of the target point. A similar result pertains even when g �= 0. To determine
the “bounce time” tbounce (from which all other path details easily follow: the
location of the bounce is, of course, known in advance: xbounce = 0) we proceed
in the spirit of Fermat’s variational solution of the optical reflection problem:
we construct

S1(tbounce; x1, t1; x0, t0) ≡ S(x1, t1; 0, tbounce) + S(0, tbounce; x0, t0)

and look for the value of ϑ ≡ tbounce that extremizes (minimizes) S1. This, in
the general case, is more easily said than done: Mathematica supplies

∂
∂ϑS1(ϑ; x1, t1; x0, t0) =

polynomial of 5th degree in ϑ

8(t0 − ϑ)2(t1 − ϑ)2

and is, indeed, prepared to provide explicit symbolic descriptions of the roots
of the numerator (of which three are real, two are complex), but these are
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Figure 10: Graph of S1(ϑ ; 3, 1; 1, 0), which evidently assumes its
minimum value at ϑ ≈ 0.25.

too complicated to write out. Let us look, therefore, to an illustrative case:
if—arbitrarily—we set (x1, t1; x0, t0) = (3, 1; 1, 0) then

S1(ϑ ; 3, 1; 1, 0) = 1
2m

{
9

1 − ϑ
− 3g(1 − ϑ) − 1

12g2(1 − ϑ)3
}

+ 1
2m

{
1

ϑ − 0
− g(ϑ − 0) − 1

12g2(ϑ − 0)3
}

which (with m and g both set to unity) is plotted in Figure 10. It is evident
from the figure that S1(ϑ ; 3, 1; 1, 0) is minimal at about ϑ = 0.25. By further
computation

∂
∂ϑS1(ϑ; 3, 1; 1, 0) =

−4 + 8ϑ + 41ϑ2 − 20ϑ3 + 13ϑ4 − 2ϑ5

8(ϑ − 0)2(ϑ − 1)2

the zeros of which are reported to lie at

ϑ1 = −0.372281
ϑ2 = 0.238123
ϑ3 = 5.372280
ϑ4 = 0.630939 + 1.949730i

ϑ4 = 0.630939 − 1.949730i

and of these only ϑ2 lies on the physical interval t0 � ϑ � t1. Feeding this
information into the description (15) of a(x1, t1; x0, t0), we obtain

a(0, 0.238123; 1, 0) = 9.32508
a(3, 1; 0, 0.238123) = 9.32508
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0.238 1

1

3

Figure 11: The paths (1, 0) −−−→
0

(3, 1) and (1, 0) −−−→
1

(3, 1)
as computed in the text. Both m and g have been set to unity,
and because gravitational effects are almost too slight to be seen the
figure looks almost “optical.”

-10 1 10

1

3

9.325

Figure 12: Expanded view of the single-bounce path shown in the
preceding figure. That the arcs rise to the same height stands as a
check on the accuracy of the method.

In short: we find that the initial and final arcs would—if continued backward/
forward in time—achieve identical heights, and therefore have identical periods
and energies . . . as, on physical grounds, we expect and require. From

τ =
√

8a/g = 8.63716 > t1 − t0 = 1

we see that only one such bounce can occur within the allotted time interval.
Shown above are graphical representations of the illustrative results just
computed.
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n � 2 -bounce paths To identify the 2-bounce path (x0, t0) −−−→
2

(x1, t1)
(if it exists!) one might adopt the following search procedure:

• Assign a value to τtrial < t1 − t0.
• Use the procedure just outlined to fit a 1-bounce path onto the interval

(t1 − t0) − τtrial

• Compute the τimplied of that path.
• Adjust the value of τtrial so as to achieve τtrial = τimplied, which will be

possible only in some cases (see below) and tedious in almost all cases.
From this line of argument it follows that we must have

τ � τmin ≡
√

8(greater of x0, x1)
g

and that

greatest possible number of bounces = 1 + integral part of
t1 − t0
τmin

It would evidently be difficult to describe the action of a multi-bounce path in
analytically closed form.

quantum dynamics of a bouncing ball

6. Planck quantization. Planck (), in order to account mechanically for
the successful description of the blackbody radiation spectrum to which he had
been led by other (interpolative thermodynamic) means, was forced to dismiss
all classical oscillator motions except those that conformed to the quantization
condition ∮

p dx = nh : n = 1, 2, 3, . . . (17)

Bringing that condition to the bouncing ball problem, we on the basis of (44)
have

1
12mg2τ3 = nh

according to which only bounces of certain discrete periods

τn =
[
12nh/mg2

] 1
3 : n = 1, 2, 3, . . .

are “allowed.” This, by (2), is equivalent to the assertion that a ball can bounce
only to certain discrete heights

an = 1
8gτ2

n =
[

1
83 g3122n2(2π�)2/m2g4

] 1
3

=
(
�

2/2m2g
) 1

3
[
3π
2 n

] 2
3
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with certain discrete energies

En = mgan =
(

1
2mg2

�
2
) 1

3
[
3π
2 n

] 2
3

In the notations introduced at (48A) these results of Planck quanatization
become

an = " ·
[
3π
2 n

] 2
3 (18.1)

En = E ·
[
3π
2 n

] 2
3 (18.2)

while
τn =

√
8an/g =

(
16�/mg2

) 1
3 ·

[
3π
2 n

] 1
3 (18.3)

alerts us to the fact that—while in free fall physics it may be useful to speak
of a “natural time” (2�/mg2)

1
3 — in quantum bouncer physics it becomes more

useful to speak of a “natural period” (16�/mg2)
1
3 .

In §13A we looked to the numerical value assumed by " in some typical
cases. We found that if g is assigned its terrestrial value then for electronic
masses " = 0.880795 mm, which gives

aelectron
1 = 2.47572 mm

τ electron
1 = 0.08470 s

Notice that a1 scales as m− 2
3 while τ1 scales as m− 1

3 : increasing the mass by
a factor of 106 would reduce a1 by a factor of 10−4 and τ1 by a factor of 10−2,
but even when thus reduced the numbers remain remarkably large.

7. Basic bouncer theory according to Schrödinger. The quantum mechanical
free fall and bouncer problems take identical Schrödinger equations{

− �
2

2m

(
∂
∂x

)2 + mgx
}

Ψ(x, t) = i� ∂
∂tΨ(x, t) (19)

as their points of departure. But in the latter case we require

Ψ(x < 0, t) = 0 : all t

This amounts to a requirement that the

probability current = i �
2

2m (Ψ∗
xΨ − ΨxΨ∗)

∣∣∣∣
x=0

= 0 : all t

which we achieve by imposing the boundary condition

Ψ(0, t) = 0 : all t (20)

It is the presence of that boundary condition that serves to distinguish the one
problem from the other, and it makes all the difference: it renders the energy
spectrum discrete, and the eigenfunctions normalizable, and endows the system
with the ground state that in the case of free fall was found—remarkably—to
be lacking.9 For all those reasons, the bouncer problem is in many respects
easier than the free fall problem, in many respects more “physical.”

9 See again page 26A.
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We proceed not from (19) but from its t -independent companion{
− �

2

2m

(
∂
∂x

)2 + mgx
}

Ψ(x) = EΨ(x) (21)

It is established in §14A that if we write

y = k
(
x− E

mg

)
= k

(
x− a

)
with k ≡

(
2m2g

�2

) 1
3 = 	 –1

and Ψ(x) ≡
√
k · ψ(y) then (21) assumes the form

ψ
′′
(y) = yψ(y)

of Airy’s differential equation, the physically acceptable solutions of which are
proportional to the Airy function10

Ai(y) ≡ 1
π

∫ ∞

0

cos
(
yu + 1

3u
3
)
du (22)

The normalizable solutions of (21) have therefore the form

Ψ(x) = (normalization factor) · Ai
(
k(x− a)

)
and to achieve compliance with the boundary condition (20) we must assign to
a ≡ E/mg such a value as to render

−ka = a zero of the Airy function (23)

From the graph (Figure 13) of Ai(z) it becomes obvious that the zeros of the
Airy function are all negative: they will be notated

· · · < −z3 < −z2 < −z1 < 0

We have in this notation to set a equal to one or another of the values

an = zn/k = 	 · zn (24)

and are led thus to the energy eigenvalues

En = mg	 · zn : n = 1, 2, 3, . . . (25)

The associated eigenfunctions are

Ψn(x) = Nn · Ai(kx− zn) (26)

where Nn is a normalization factor, defined by the condition∫ ∞

0

[
Ψn(x)

]2
dx = N2

n ·
∫ ∞

0

[
Ai(kx− zn)

]2
dx

= N2
n · k–1

∫ ∞

0

[
Ai(z − zn)

]2
dz = 1 (27)

Here (compare(54A)) we have found it natural to introduce the dimensionless

10 The linearly independent solution Bi(y) blows up as y ↑ ∞, so is rendered
inappropriate in the present context.
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Figure 13: Graph of the Airy function Ai(z), showing all the zeros
(except the one at z = ∞) to be negative.

variable z ≡ kx. If we write

Nn ≡
[ ∫ ∞

0

[
Ai(z − zn)

]2
dz

]− 1
2

(28)

then (27) becomes

Nn =
√
kNn : [Nn] = (length)−

1
2

which serves at (26) to bestow upon Ψn(x) the proper physical dimension.

7. Zeros of the Airy function. Reading rough estimates of the locations of the
zeros of Ai(z) from Figure 13, we feed that data into Mathematica commands
of the form FindRoot[AiryAi[z],{z,−2}] and obtain the data tabulated in
the first column on the following page. The first ten entries could alternatively
have been taken from Table 10.13 in Abramowitz & Stegun,11 who at 10.4.105
report that

zn =Z
{
1 + 5

48Z
−3 − 5

36Z
−6 + 77125

82944Z
−9 − · · ·

}
Z ≡ Z(n) ≡

[
3π
2

(
n− 1

4

)] 2
3

Looking to the third column in the following table, we see that Z
{
1 + 5

48Z
−3

}
is accurate to at least 8 places if n � 9, while from data in the second column
we learn that Z by its unadorned self gives a result that is accurate to 0.02%
already at n = 5. It is for this reason that Gea-Banacloche4 is content to work
in the approximation

zn ≈
[
3π
2

(
n− 1

4

)] 2
3 (29)

11 Handbook of Mathematical Functions ().



Quantum theory 19

table of the leading zeros of the airy function
AND OF LEADING APPROXIMATIONS, WITH MINUS SIGNS OMITTED

n zn Z Z
{
1+ 5

48Z
−3

}
1 2.338107 2.320251 2.339600
2 4.087949 4.081810 4.088062
3 5.520560 5.517164 5.520586
4 6.786708 6.784454 6.786718
5 7.944134 7.942487 7.944138
6 9.022651 9.021373 9.022653
7 10.040174 10.039142 10.040176
8 11.008524 11.007665 11.008525
9 11.936016 11.935285 11.936016

10 12.828777 12.828144 12.828777
11 13.691489 13.690934 13.691489
12 14.527830 14.527337 14.527830
13 15.340755 15.340313 15.340755
14 16.132685 16.132285 16.132685
15 16.905634 16.905270 16.905634
16 17.661300 17.660966 17.661300
17 18.401133 18.400825 18.401133
18 19.126381 19.126096 19.126381
19 19.838130 19.837865 19.838130
20 20.537333 20.537086 20.537333

In the approximation (29) we from (25) obtain

schrödinger : En ≈ mg	 ·
[
3π
2

(
n− 1

4

)] 2
3 (30)

while at (18.2) we had

planck : En = mg	 ·
[
3π
2 n

] 2
3

Planck was led by the semi-classical methods of the “old quantum theory” to a
conclusion that becomes more and more accurate as n becomes large—at “high
quantum number” in the old phraseology. . .which is to say: in the classical
limit. To establish the point analytically we have only to notice that12

n
2
3 −

(
n− 1

4

) 2
3 = 1

6

(
1
n

) 1
3 + 1

144

(
1
n

) 4
3 + 1

1296

(
1
n

) 7
3 + · · ·

12 Ask Mathematica to “expand about n = ∞.”
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8. Orthogonality of eigenfunctions: normalization factors. General quantum
mechanical principles require

∫
Ψ∗

m(x)Ψn(x) dx = 0 : m �= n

which by (26) becomes a statement about the Airy function:

∫ ∞

0

Ai(z − zm)Ai(z − zn) dz = 0 : m �= n (31)

This, from an analytical point of view, seems implausible on its face,13 but is
supported by numerical integration: looking, for example, to

∫
Ψ∗

1Ψ2 dx we
find that NIntegrate[AiryAi[z-2.338107]AiryAi[z-4.087949],{z,0,∞}]
returns the value 1.08364 × 10−8, and that such results are greatly improved
when we use more accurate descriptions of zm, zn. We return later to description
of a remarkable analytical proof of (31).

Taking zn-values from the first column on the preceding page and working
numerically from the definition (28) of Nn we obtain the data recorded in the
first column of the table on the following page. Gea-Banacloche4—remarkably, it
seems to me—was led from such data by “a little guess-work” to the observation
that the normalization factors are well-approximated by the simple expression

N(n) ≡
[ π√

zn

] 1
2 ≈

[
π

[ 32π(n− 1
4 )]

1
3

] 1
2

=
[ 8π2

3(4n− 1)

] 1
6

(32)

—the accuracy of which can be gauged from data in the second column of the
table.

Gea -Banacloche remarks that he was unable to find any such formula
in the literature, and in his Appendix sketches “the details of the ‘derivation’
[in the hope that] they might inspire somebody to find a better approximation.”
Gea -Banacloche’s hope was very promptly fulfilled: his paper was published in
the September issue of the American Journal of Physics (), and by the
28th of that month David Goodmanson’s short note4—establishing the precise
accuracy of (32), and much else besides—had been received by the editors, who
on the 18th of the next month received also a note from Olivier Vallée,4 who
revealed himself to be (yet another condensed matter theorist, but one who
was) expert in the area applied Airy functions, about which he had (together
with M. Soarès) written an entire monograph.14 Vallée was able to trace (32)
to its simple foundations, and to cite historical references. Goodmanson’s work
will be taken up in §10.

13 Or at any rate would if we were unfamiliar with the remarkable information
reported at (58A).

14 Les Fonctions Airy Pour la Physique (). See http://www.univ-orleans.
fr/SCIENCES/LASEP/OVallee/. Google reports 26,800 “Airy function” sites.
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table of numerical/conjectured

normalization factors

n Nn N(n)

1 1.426105 1.423372
2 1.245157 1.246518
3 1.155797 1.156323
4 1.097875 1.098146
5 1.055592 1.055755
6 1.022576 1.022684
7 0.995649 0.995725
8 0.993020 0.973067
9 0.953543 0.953586

We arrive thus at the following short list of orthonormal functions:

f1(z) = 1.426105 Ai(z − 2.338107)
f2(z) = 1.245157 Ai(z − 4.087949)
f3(z) = 1.155797 Ai(z − 5.520560)
f4(z) = 1.097875 Ai(z − 6.786708)
f5(z) = 1.055592 Ai(z − 7.944134)
f6(z) = 1.022576 Ai(z − 9.022651)
f7(z) = 0.995649 Ai(z − 10.040174)
f8(z) = 0.973010 Ai(z − 11.008524)
f9(z) = 0.953543 Ai(z − 11.936016)

...




(33)

For large n we can, in excellent approximation, write

fn(z) =
[ 8π2

3(4n− 1)

] 1
6
Ai

(
z −

[
3π
2

(
n− 1

4

)] 2
3
)

(34)

On the next two pages I show graphs of the eight such functions of lowest order.

9. Comparison of quantum with classical probability density. Assign to n a value
large enough to make the point at issue, yet not so large as to be computationally
burdensome or graphically opaque: n = 20 will do nicely. Drawing upon (34)
we then have

f20(z) = (0.832607)Ai(z − 20.5371)

To pursue this discussion it will be convenient to adopt units in which k = 1,
so that the distinction between x and z ≡ kx, as between Ψn(x) and fn(z),
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Figure 14: Graphs of (reading top to bottom) f1(ξ), f2(ξ), f3(ξ)
and f4(ξ). Notice that

order = number of zero crossings +1
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Figure 15: Graphs of (reading top to bottom) f5(ξ), f6(ξ), f7(ξ)
and f8(ξ).
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disappears. This done, the classical turning point can be said to lie in this
instance at a = z20 = 20.537 and the classical distribution Q(x)—the classical
counterpart to |Ψ20(x)|2, as it was described at (8)—is given by

Q(z) =




1
2
√

20.537
√

20.537 − z
: 0 � z � 20.537

0 : 20.537 < z

Superimposed graphs of the classical and quantum distributions are shown in
the following figure:

5 10 15 20
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0.2

0.3

0.4

Figure 16: Superposition of the graphs of |f20(z)|2 and of its
classical counterpart. Such figures are more commonly encountered
in accounts of the theory of harmonic oscillators (see, for example,
Figure 2.5b on page 42 in David Griffiths’ Introduction to Quantum
Mechanics), but the lesson is the same: the classical distribution
appears to be a locally averaged or “dithered” version of the quantum
distribution.

The likelihood that the particle will be found farther from the origin than
is classically allowed is in this instance given by

∫ ∞

20.537

|ψ20(x)|2 dx = 0.04644

which is to say: we have in this instance a 4.6% quantum violation of what we
might classically expect. Pretty clearly: as n increases the “quantum violation”
decreases, which is the upshot of the familiar assertion that “classical mechanics
is not so much ‘quantum mechanics in the (necessarily only formal!) limit
� ↓ 0’ as it is ‘quantum mechanics in the limit that the quantum numbers have
become large.’ ” The same point emerged, in another connection (a spectral
connection), at the bottom of page 19.
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Bringing (9) to the illustrative problem at hand, we have

〈x1〉classical20 = 2
3 (z20)

1 = 13.6914

〈x2〉classical20 = 8
15 (z20)

2 = 224.9453

while by numerical integration we find

〈x1〉quantum
20 = 13.6916

〈x2〉quantum
20 = 224.9493

So precise is the agreement that we expect to be able to say sharp things about
Airy integrals of the form ∫ ∞

0

[
Ai(z − zn)

]2
zp dz

That indeed one can was shown very cleverly by David Goodmanson, and it is
to an account of his work that I now turn:

10. Goodmanson’s analytical proof/extension of Gea-Banacloche’s emperical
discoveries. My source here is the short paper15 by David M. Goodmanson
to which I have already made several allusions. I find it convenient to adopt a
slight modification of Goodmanson’s notation.

Let the zeros of Ai(z) be denoted −zn : · · · − z3 < −z2 < −z1 < 0 as
before. Define

An(z) ≡ Ai(z − zn) :
{

translated Airy function with
nth zero sitting at the origin

and agree to work on the “bouncer half-line” z � 0: all
∫

’s will be understood
therefore to mean

∫ ∞
0

. Ai(z) is a solution of Airy’s differential equation

Ai
′′
(z) = z Ai(z)

so we have

A
′′
n (z) = (z − zn)An(z) (35.1)

and

An(zn) = 0 (35.2)

Notice that equations (35) do not require that the zn be explicitly known.

15 Short paper with a long title: “A recursion relation for matrix elements
of the quantum bouncer. Comment on ‘A quantum bouncing ball,’ by Julio
Gea-Banacloche [Am. J. Phys. 67 (9), 776–782 (1999)],” AJP 68, 866 (2000).
Goodmanson reports no institutional affiliation, reports only that his home
address is Mercer Island, Washington. I wrote him to express my admiration
of his work, and in his response he informed me that he took his PhD from the
University of Colorado, taught briefly at Whitman College, and presently works
as an engineer in Boeing’s Electromagnetic Effects & Antennas department. In
his spare time he pursues a number of my own favorite subjects.
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Goodmanson’s ingenious point of departure is the trivial identity

[
− f

′′
(AmAn)

′
+ 2f

′
A

′
mA

′
n

]∞
0

=
∫ ∞

0

[
− f

′′
(AmAn)

′
+ 2f

′
A

′
mA

′
n

]′
dz (36)

where f(z) is a generic placeholder that will acquire enforced properties as we
proceed: our interest will attach ultimately to the cases f(z) = zp : p � 0.

Look to the integrand on the right: we have

[
− f

′′
(AmAn)

′
+ 2f

′
A

′
mA

′
n

]′
= −f

′′′
(AmAn)

′
+ f

′′[
2A

′
mA

′
n − (AmAn)

′′]
+ 2f

′
(A

′′
mA

′
n + A

′
mA

′′
n)

Using (35.1) to eliminate all the A
′′ -terms, we obtain

= − f
′′′

(AmAn)
′ − f

′′
AmAn(2z − zm − zn)

+ 2f
′[
AmA

′
n(z − zm) + AnA

′
m(z − zn)

]

Integration by parts gives
∫ ∞

0

[
− f

′′′
(AmAn)

′]
dz = −f

′′′
(AmAn)

∣∣∣∞
0

+
∫ ∞

0

f
′′′′

AmAn dz

where the leading term on the right drops away because An(0) = An(∞) = 0.
We now have

left side of (36) =
∫ ∞

0

AmAn

[
f

′′′′− 2(z − zave)f
′′]

dz (37)

+
∫ ∞

0

2f
′[
AmA

′
n(z − zm) + AnA

′
m(z − zn)

]
dz

where with Goodmanson we have written

(2z − zm − zn) = 2
(
z − zm + zn

2

)
≡ 2(z − zave)

The resourceful Dr. Goodmanson uses the identity

ab + cd = 1
2 (a + c)(b + d) + 1

2 (a− c)(b− d)

to bring the second of the preceding integrals to the form
∫ ∞

0

[
2f

′
(AmAn)

′
(z − zave) − f

′
(AmA

′
n −AnA

′
m)(zm − zn)

]
dz

and after an integration by parts obtains
∫ ∞

0

{
AmAn

[
− 2f

′′
(z − zave) − 2f

′]
+ f(AmA

′′
n −AnA

′′
m)(zm − zn)

}
dz
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which, if we again use (35.1) to eliminate the A
′′ -terms, becomes

∫ ∞

0

AmAn

[
− 2f

′′
(z − zave) − 2f

′
+ f(zm − zn)2

]
dz

Returning with this information to (37) we have what I will call “Goodmanson’s
identity”

[
− f

′′
(AmAn)

′
+ 2f

′
A

′
mA

′
n

]∞
0

(38)

=
∫ ∞

0

AmAn

[
f

′′′′− 4(z − zave)f
′′ − 2f

′
+ (zm − zn)2f

]
dz

It is from (38) that Goodmanson extracts all of his remarkable conclusions:

Set m = n and f(z) = z Then (38) reads

[
2A

′
nA

′
n

]∞
0

=
∫ ∞

0

AnAn

[
− 2

]
dz

which by A
′
n(∞) = 0 becomes

∫ ∞

0

A2
n(z) dz =

[
A

′
n(0)

]2

(which, as it happens, is precisely Vallée’s equation (1)). The normalized
bouncer eigenfunctions can therefore be described16

ψn(z) =NnAn(z)

Nn =
(
|A′

n(0)|
)–1 ≡

(
|A′

(−zn)|
)–1 (exactly!) (39)

But we are informed by Abramowitz & Stegun (10.4.96) that

A
′
(−zn) = (−)n−1 f1

[
3π
8 (4n− 1)

]
f1(q) ≡ π− 1

2 q
1
6
(
1 + 5

48q
−2 − 1525

4608q
−4 + · · ·

)

so in leading order we have

Nn =
[

3
8π2 (4n− 1)

]− 1
6 ≡ N(n)

In thus accounting for Gea-Banacloche’s emperical formula (32) Goodmanson
has greatly improved upon it . . . and at the same time fulfilled the hope that
inspired Gea-Banacloche to write his Appendix. But Goodmanson at a single
stroke also accomplished much more:

16 Let us, in service of clarity, agree to write ψn(z) where formerly we wrote
fn(z): f has become a busy letter, and is about to get busier.
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Multiply (38) by NmNn to obtain
[
− f

′′
(ψmψn)

′
+ 2f

′
ψ

′
mψ

′
n

]∞
0

=
∫ ∞

0

ψmψn

[
f

′′′′− 4(z − zave)f
′′ − 2f

′
+ (zm − zn)2f

]
dz

≡ 〈m|
[
f

′′′′− 4(z − zave)f
′′ − 2f

′
+ (zm − zn)2f

]
|n〉

and notice that
[
− f

′′
(ψmψn)

′
]∞
0

=
[
2f

′
ψ

′
mψ

′
n

]∞
= 0 by established properties of ψn(z)

So we have

〈m|
[
f

′′′′− 4(z − zave)f
′′ − 2f

′
+ (zm − zn)2f

]
|n〉 = −2f

′
ψ

′
mψ

′
n

∣∣∣
0

(40)

Set f(x) = xp with p � 0 and notice that the expression on the right side of
(40) now vanishes unless p = 1. In this specialized instance of (40) we have

p(p− 1)(p− 2)(p− 3)〈m|zp−4|n〉
+4p(p− 1)zave〈m|zp−2|n〉

−2p(2p− 1)〈m|zp−1|n〉
+(zm − zn)2〈m|zp−0|n〉 = −2δ1pψ

′
m(0)ψ

′
n(0)

= 2δ1p(−)m−n+1 (41)

where the factor (−)m−n = (−)m+n arose from the “dangling Abramowitz &
Stegun signs” that were discarded when we constructed Nn, and where it is
understood that terms of the form 〈m|znegative power|n〉 are to be abandoned. It
is as implications of (41) that Goodmanson obtains his results:

Set m = n and p = 0, 1, 2, 3, . . . and read off statements which after easy
serial simplifications become

p = 0 : 0 = 0
p = 1 : 〈n|n〉 = 1 (42.0)
p = 2 : 〈n|z|n〉 = 2

3zn (42.1)

p = 3 : 〈n|z2|n〉 = 4
5zn〈n|z|n〉 = 8

15z
2
n (42.2)

...

Of these, (42.0) reasserts the normalization of the bouncer state |n〉, (42.1)
reproduces a result to which Gea-Banacloche was led “experimentally” on the
basis of a classical guess,17. . . as doubtless he would have been led also to (42.2)
if he had had any interest in 〈n|z2|n〉.

17 See again the top of page 25.



Quantum theory 29

Set m �= n and p = 0, 1, 2, 3, . . . Goodmanson is led to

p = 0 : 〈m|n〉 = 0 (43.0)
p = 1 : 〈m|z|n〉 = 2(−)m−n+1(zm − zn)−2 (43.1)
p = 2 : 〈m|z2|n〉 = 12〈m|x|n〉(zm − zn)−2

= 24(−)m−n+1(zm − zn)−4 (43.2)
...

Of these, (43.0) asserts the orthogonality of the bouncer eigenstates, (43.1)
establishes the exactness of a relation that Gea-Banacloche had discovered
experimentally and guessed to be exact, and (43.2) is new.

Goodmanson has managed by a cunning argument—an argument that,
however, employs only the simplest of technical means (integration by parts)—
to establish an infinitude of exact formulæ that involve the transcendental zeros
of the Airy function but do not presume those zn to be explicitly known. His
argument appears to hinge essentially on the simplicity of Airy’s differential
equation, and would not appear to be applicable within a wider context—would
not appear to have things to say about (say) the functions defined

Jn(z) ≡ J0(z − zn) where J0(zn) = 0

were the zn’s are zeros of the Bessel function J0(z)—so it seems unlikely that
he adapted his argument from some established source: how he managed to
come up with (36) as a point of departure remains therefore a mystery.

11. Why the “bounced Gaussian” presents a problem. problem #1 is How
to describe the initial wavepacket? One might be tempted, in imitation of (59A),
to write

Ψ(x, 0) = 1√
s
√

2π
e−

1
4

[x− a
s

]2

(44)

But that function (i ) does not vanish at x = 0, and (ii ) is normalized on the
wrong base (which is to say: on (−∞,∞) instead of on (0,∞)). On account of
(i ) the Gaussian (44) does not describe a possible state of the bouncer, though it
nearly does if a � s: for example, if a = 10s then Ψ(0, 0) = 1.39×10−11Ψ(a, 0).

We might resolve point both difficulties by writing

ψ(x, 0) = N ·
{
e−

1
4

[x− a
s

]2

− e−
1
4

[x + a
s

]2}
(45.1)

and setting

N =
[
s
√

2π
(
1 − e−

1
2 [a/s]2

)]− 1
2

(45.2)

↓

=




1√
s
√

2π
for a � s; i.e., as a ↑ ∞

∞ for a � s; i.e., as a ↓ 0
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Figure 17: “Pinched Gaussian” wavepackets obtained from (45),
in which I have set s = 1 and a = 0, 2, 4, 6, 8, 10, 15, 20.

On its face, (45) appears to assume the improper form ∞ · 0 at a = 0, but by
l’Hôspital’s Rule we are led actually to the quite unpathological function

lim
a↓0

Ψ(x, 0) =
[

2
π

] 1
4
[

1
s
] 3

2 xe−
1
4

[
x/s

]2

(46)

and confirm that indeed
∫ ∞
0

(etc.)2 dx = 1. Some typical “pinched Gaussian”
wavepackets are shown above.

It should be noted that J. Gea-Banacloche4 omits the preceding discussion:
he is content to proceed from (44) and to work in the approximation a � s
(i.e., to assume that the wavepacket is dropped from a height large compared
to its width).

problem #2: To describe the dynamically evolved wavepacket we have—
in principle—only to write

Ψ(x, t) =
∑

n

cnΨn(x)e−
i
�

Ent (47.1)

cn =
∫ ∞

0

Ψn(ξ)Ψ(ξ, 0) dξ (47.2)

but this is more easily said than done: the program presumes
• that we possess exact descriptions of all eigenfunctions/eigenvalues; i.e., of

all the zeros of Ai(x), and all normalization factors;
• that we are able to perform the

∫
’s;

• that we are able to perform the final
∑

n.

Reverse the order of integration and summation. One then has

Ψ(x, t) =
∫ ∞

0

K(x, t; ξ, 0)Ψ(ξ, 0) dξ (48.1)

K(x, t; ξ, 0) =
∑

n

e−
i
�

Ent Ψn(x)Ψn(ξ) (48.2)
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and sees that those same difficulties beset the spectral construction and use of
the propagator.

problem #3: We have no alternative but to resort to various approximation
schemes, but confront then the problem of distinguishing real/physical results
from artifacts, and here it is easy to stumble. For example: from (47.1) it
follows that the frequencies present in the motion of

|Ψ(x, t)|2 =
∑
m,n

c∗mcnΨm(x)Ψn(x)e
i
�
(Em−En) t

are given (see again (25)) by

ωmn ≡ 1
�
E · zmn with zmn ≡ zm − zn

where now E ≡ mg	 =
(

1
2mg2

�
2
) 1

3 . But the numbers

z12 z13 z14 . . .
z23 z24 . . .

z34 . . .
. . .

are (I assert in the absence of proof) irrational multiples of one another .18 It
becomes therefore a little difficult to understand how the “revivals” that will
soon concern us can be understood as resonance phenomena.

12. Approximate development of a Gaussian wavepacket as a superposition of
bouncer eigenfunctions. For the purposes of this discussion I will take the
bouncer eigenfunctions to be given by19

Ψ1(x) =
√
k (1.4261) Ai(kx− 2.3381)

Ψ2(x) =
√
k (1.2452) Ai(kx− 4.0879)

Ψ3(x) =
√
k (1.1558) Ai(kx− 5.5206)

Ψ4(x) =
√
k (1.0979) Ai(kx− 6.7867)

Ψ5(x) =
√
k (1.0556) Ai(kx− 7.9441)

and, for n > 5, by

Ψn(x) =
√
k
[

8π2

3(4n− 1)

]1
6
Ai

(
kx−

[
3π
8 (4n− 1)

] 2
3
)

18 In this respect the quantum bouncer problem differs profoundly from the
harmonic oscillator (En ∼ n), the particle-in-a-box (En ∼ n2) and the Kepler
(En ∼ n−2) problems.

19 We work with the aid of (26) from (33) and (34), taking care to “turn
on the asymptotic approximation” only when n is large enough for it to have
become reliable.
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To describe our initial Gaussian wavepacket we adopt a “bouncer adapted”
version of (44), writing

Ψ(x, 0; a, s) = 1√
s
√

2π
e−

1
4

[x− a
s

]2

: a � s

=
√
k 1√

σ
√

2π
e−

1
4

[z − α
σ

]2

≡
√
k · ψ(z, 0;α, σ)

with x ≡ 	z, a ≡ 	α, s ≡ 	σ and k ≡ 	 –1.

The figure on the following page indicates why we might expect the
integrals cn to be relatively small unless En/mg ≈ a± s: if En/mg � a− s
then the integrand never departs much from zero because it is the product of a
pair of functions (eigenfunction and Gaussian) that do not overlap much, while
if En/mg � a+s then the Gaussian is “buzzed to death.” Moreover, we expect
the cn to be most sharply peaked at cmax when σ ≈ z1 − z2: if σ � z1 − z2

then many eigenfunctions will be needed to capture the detail written into the
Gaussian, while if σ � z1 − z2 then many eigenfunctions will enjoy significant
overlap. Those are our broad expectations. The question is: How do they
square with the details of the situation?

Look to some illustrative numerical evidence. Take

Gaussian wavepacket = ψ(z, 0; 15, 1.75)

where I have set σ = 1.75 ≈ z1−z2 = −2.3381+4.0879 = 1.7498. Mathematica
responds to the command

NIntegrate[Evaluate[ψ(z, 0; 15, 1.75) ∗ ψn(z), {z, 0,∞}]]
with complaints20 and this data:

c1 = 0.0000 c14 = 0.3902
c2 = 0.0001 c15 = 0.3233
c3 = 0.0008 c16 = 0.2427
c4 = 0.0034 c17 = 0.1653
c5 = 0.0113 c18 = 0.1021
c6 = 0.0300 c19 = 0.0572
c7 = 0.0664 c20 = 0.0290
c8 = 0.1251 c21 = 0.0132
c9 = 0.2041 c22 = 0.0054
c10 = 0.2920 c23 = 0.0020
c11 = 0.3703 c24 = 0.0006
c12 = 0.4191 c25 = 0.0002
c13 = 0.4259 = cmax

20 “Underflow occurred in computation,” “NIntegrate failed to converge to
prescribed accuracy after 7 recursive bisections . . . ”
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Figure 18: Graphical indication of why—for distinct reasons—we
expect the cn to be small if either zn � α or zn � α.
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Figure 19: ListPlot display of the data tabulated on page 32.
The cn’s • that contribute significantly to the representation of that
particular Gaussian wavepacket are seen to have

4 = 13 − 9 � n � 13 + 9 = 22

The data tabulated on page 32 is plotted above (note the roughly normal
distribution), and that it works! is convincingly demonstrated below.21 In
Figures 21 I display data taken from another pair of Gaussians—one fatter, one
thinner than the case σ = 1.75 discussed above. The result is in one respect
surprising, as noted in the caption.
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Figure 20: Superimposed graphs of

ψ(z, 0; 15, 1.75) and
22∑

n=4

cnψn(z)

with c’s taken from the data displayed in Figure 19. The difference
is impreceptible.

21 I am encouraged on this evidence to think that Mathematica supplies good
data even when she complains.



Quantum theory 35

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

Figure 21 (upper): Here superimposed upon the data • of the
preceding figures is data • associated with the relatively fatter
Gaussian σ = 2.5: the c’s are more broadly distributed about cmax

—precisely as anticipated.

Figure 21 (lower): Here the superimposed data • is associated
with the relatively sharper Gaussian σ = 1.0 . Contrary to what we
anticipated, the c’s are now still more narrowly distributed about
cmax. This is a development that awaits explanation.

We have proceeded thus far numerically. I turn now to discussion of some
analytical aspects of the situation.22 Drawing upon the integral representation
(22) of the Airy function, we by (47.2) have

cn = 1
πNn

1√
σ
√

2π

∫ ∞

0

{ ∫ ∞

0

cos
(
[y − zn]u + 1

3u
3
)
e−

1
4

[y − α
σ

]2

du

}
dy

Reverse the order of integration, and (on the assumption that α � σ) replace

22 The pattern of the argument was sketched already by Gea-Banacloche near
the end of his §2.
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∫ +∞
0

dy by
∫ +∞
−∞ dy : Mathematica then supplies

{
etc.

}
= 2σ

√
π e−σ2u2

cos
(
[α− zn]u + 1

3u
3
)

whence

cn =
[

4σ
π
√

2π

] 1
2
Nn

∫ ∞

0

e−σ2u2
cos

(
[α− zn]u + 1

3u
3
)
du (49)

As a check on the accuracy of this result I set α = 15, σ = 1.75 and n = 13
(whence N13 = 0.8956 and z13 = 15.3403) and by numerical evaluation of the
integral obtain c13 = 0.4529, in precise agreement with the value tabulated on
page 32. I am confident that one would enjoy the same success with other
values of n.

If σ � 1—which is (in dimensioned physical variables) to say: if

a � s ≡ 	σ � 	 ≡
(

�
2

2m2g

) 1
3

—then the Gaussian e−σ2u2
dies so fast that only small u -values contribute to

the
∫

in (49): to exploit the implications of this fact we adopt the abbreviation
A ≡ α− zn and write

cos
(
Au + 1

3u
3
)

= cosAu · cos
(
Au + 1

3u
3
)

cosAu

= cosAu ·
{

1 − 1
3u

3 tanAu− 1
18u

6 + 1
162u

9 tanAu + · · ·
}

Mathematica now supplies

∫ ∞

0

e−σ2u2
cosAudu =

√
π

2σ e−
1
4 A2/σ2

−
∫ ∞

0

e−σ2u2 1
3u

3 sinAudu =
√

π
2σ e−

1
4 A2/σ2 · A

3 − 6Aσ2

24σ6

... subsequent integrals are also “elementary”

on which basis we have

cn = 1√
σ
√

2π
Nn e−[α− zn]2/4σ2

·
{

1 +
[α− zn]3 − 6[α− zn]σ2

24σ6
+ · · ·

}
(50)

This result accounts nicely for the Gaussian patterns evident in Figure 19 and
Figure 21 (upper), and provides insight into the circumstance responsible for
the slight deviations from “Gaussianness” evident in Figure 21 (lower).
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13. See the dropped wavepacket bounce: motion of the mean and of other
low-order moments. Generally, to launch

Ψ(x, 0) =
∑

n

cmΨn(x)

into dynamical motion we have only to let the individual eigenfunctions start
buzzing, each with its own characteristic eigenfrequency ωn = En/� :

↓
Ψ(x, t) =

∑
n

cmΨn(x) e−iωnt (51)

We have special interest in the motion of the associated probability density23

|Ψ(x, t)|2 =
∑
m

∑
n

cmcnΨm(x)Ψn(x) ei(ωm − ωn)t

=
∑
m

∑
n

cmcnΨm(x)Ψn(x) cosωmnt with ωmn ≡ ωm − ωn

=
∑

n

[
cnΨn(x)

]2 + 2
∑
m>n

∑
n

cmcnΨm(x)Ψn(x) cosωmnt (52)

Notice that if only two eigenstates enter into the construction of Ψ(x, 0)

Ψ(x, 0) = c1Ψ1(x) + c2Ψ2(x)

then (52) becomes

|Ψ(x, t)|2 =
[
c1Ψ1(x)

]2 +
[
c2Ψ2(x)

]2 + 2 c1c2Ψ1(x)Ψ2(x) cos
{
(ω1 − ω2)t

}
Such motion is necessarily periodic. But if three (or more) eigenstates enter
into the construction of Ψ(x, 0) then the description of |Ψ(x, t)|2 involves terms
proportional to each of the following

cos
{
(ω1 − ω2)t

}
cos

{
(ω1 − ω3)t

}
cos

{
(ω2 − ω3)t

}
and will, in general, be aperiodic: periodicity in such a circumstance requires
the existence of integers p, q and r such that it is possible to write

(ω1 − ω2)τ = p · 2π
(ω1 − ω3)τ = q · 2π
(ω2 − ω3)τ = r · 2π


 with some appropriately selected τ

Which is to say:

ω1 − ω2

ω1 − ω3
,
ω1 − ω2

ω2 − ω3
and

ω1 − ω3

ω2 − ω3
must all be rational numbers

23 The applications of specific interest to us present only real ψn’s and real
cn’s, so I omit all of the anticipated ∗’s from my equations.
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Of course, if two of those ratios are rational then the rationality of the third
is automatic, but that does not diminish the force of the preceding periodicity
condition.24

Returning now from generalities to the bouncer: At (25) we had

En = mg
(

�
2

2m2g

) 1
3 zn : bouncer eigenvalues

so
ωn =

(
mg2

2�

) 1
3 zn (53)

gives
ωp − ωq

ωr − ωs
=

zp − zq

zr − zs

I have no idea how to prove25 so must be content to

conjecture : All ratios
zp − zq

zr − zs
are irrational (54)

and on this basis to conclude that the motion of |Ψ(x, t)|2 is (except in trivial
cases of the sort described above) aperiodic.26 The recurrent “collapses” and
“revivals” which are the subject of Gea-Banacloche’s §4 must evidently be subtle
phenomena, related only distantly to the familiar“periodicity of a bouncing ball”
. . .but I get ahead of myself: we must first expose those (surprising) phenomena
before it will make sense to try to understand them.

From (52) it follows that

〈x〉at time t =
∑
m

∑
n

cmcn〈x〉mn cosωmnt (55)

〈x〉mn ≡
∫ ∞

0

Ψm(x)xΨn(x) dx

Generally, we look to 〈x〉 because it is an object of direct physical/intuitive
interest, and because its t -dependence is something we can graph (whereas to
graph |Ψ(x, t)|2 we must run a movie, and the graphical display of Ψ(x, t) is

24 Generally, for what it’s worth: from ν frequencies one can construct
N ≡ 1

2ν(ν − 1) frequency differences (together with their negatives), and from
those one can construct 1

2N(N − 1) ratios (together with their reciprocals).
From a properly selected (N − 1) of those ratios (it suffices to select ratios all
of which have the same denominator) one can construct all the others, and if
those (N − 1) are rational then so are all the others, but not otherwise.

25 I will pay $100 for either a proof or a counterexample!
26 Of course, the ratios (zp − zq)/(zr − zs) are always rational when the zeros

are described only to finitely many decimal places. As in practice they always
will be. The implication is that we must be alert to the psuedo-periodicity which
is an artifact of numerical calculation.
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even more awkward). We might in the same spirit look to the t -dependence of
∆x ≡

√
〈(x− 〈x〉)2〉, and have diminishing interest also in the moving higher

moments of |Ψ(x, t)|2. Thus, in the case of the bouncer, do we acquire interest
in integrals (or “matrix elements”) of the form

〈xp 〉mn = k

∫ ∞

0

Ai(kx− zm) Ai(kx− zn)xp dx

. . .which I will discuss in the case k = 1 and (compare page 25) notate

〈zp〉mn =
∫ ∞

0

Ai(z − zm) Ai(z − zn) zp dz (56)

These are precisely the objects concerning which Goodmanson—building upon
the inspired conjectures of Gea-Banacloche—had at (42) and (43) such sharp
things to say.

Recall, before we get down to work, that at (6) we found that the classical
motion of a ball that at time t = 0 is dropped from height a = 1

8gτ
2 can be

described

x(t) =
[

2
3 + 4

π2

{
1
12 cos

[
2π t

τ

]
− 1

22 cos
[
4π t

τ

]
+ 1

32 cos
[
6π t

τ

]
− · · ·

}]
· a (57)

and that by Ehrenfest’s theorem27 we might anticipate that the motion lent to
〈x〉t by (55) will reproduce that of x(t): this, however, turns out to be very
distinctly and dramatically not the case.

Our immediate assignment is to bring (55) to a form that can be readily
digested by Mathematica, for we have no choice but to proceed by numerical
analysis of illustrative cases. We will take our initial wavepacket to be the
Gaussian Ψ(x, 0; 15, 1.75) concerning which we developed a lot of information
in §12: it will be dropped from a height a = 15�, and has s = 1.75� 	 a. We
know from Figure 20 that we can write

Ψ(x, 0; 15, 1.75) =
22∑

n=4

cnΨn(x) in good approximation

where the relevant cn-values were computed and tabulated on page 3228 and
the relevant Airy zeros zn are tabulated on the next page. Drawing upon (53)
we will write

ωmnt = (zm − zn)θ with θ ≡
(

mg2

2�

) 1
3 t : dimensionless (58)

27 See L. E. Ballentine, Quantum Mechanics (), page 296; David Bohm,
Quantum Theory (), §9.26; J. J. Sakurai, Modern Quantum Mechanics
(), page 126.

28 The accuracy/sufficiency of that list, implicit already in Figure 20, is
further supported by the observation that

22∑
4

(cn)2 = 0.9999 ≈ 1.0000
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z4 = 6.7867 z14 = 16.1327
z5 = 7.9441 z15 = 16.9056
z6 = 9.0227 z16 = 17.6613
z7 = 10.0402 z17 = 18.4011
z8 = 11.0085 z18 = 19.1264
z9 = 11.9360 z19 = 19.8381
z10 = 12.8288 z20 = 20.5373
z11 = 13.6915 z21 = 21.2248
z12 = 14.5278 z22 = 21.9014
z13 = 15.3408

we will use (not physical time t but) “dimensionless time” θ to parameterize
the progress of moving points.

Making use now of Goodmanson’s relations (42.1) and (43.1)—relations
that Gea -Banacloche was clever enough to extract speculatively from numerical
data—we find that (55) can be rendered

〈z〉θ = 2
3

22∑
4

cncnzn − 4c4
22∑
5

(−)n−4cn
cos[(zn − z4)θ]

(zn − z4)2
(59)

− 4c5
22∑
6

(−)n−5cn
cos[(zn − z5)θ]

(zn − z5)2
− · · · + 4c21c22

cos[(z22 − z21)θ]
(z22 − z21)2

For purposes of comparison we return in this light to (57), the classical
counterpart of the preceding equation: we write x = z�, a = 15� and notice
that a ball dropped from initial height 15� bounces with physical period (or
“t -period”)

τ =
√

8
g 15� =

√
120

(
�
2

2m2g4

) 1
3

and that therefore

t/τ = 1√
120

(
2m2g4

�2

) 1
6
(

2�

mg2

) 1
3 θ = 1√

60
θ ≡ θ

“θ-period”

Thus does (57) become

z(θ) =
[

2
3 + 4

π2

{
1
12 cos

[
2π θ√

60

]
− 1

22 cos
[
4π θ√

60

]
+ 1

32 cos
[
6π θ√

60

]
− · · ·

}]
·15

It is, however, computationally more efficient to work from the dropped-instead-
of-lofted variant of (3): from

x(t) = a− 1
2gt

2 = a
[
1 − 4(t/τ)2

]
: − 1

2τ < t < + 1
2τ
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it follows in dimensionless variables that (in the case a = 15�)

z(θ) = 15
[
1 − 4(θ/

√
60)

]
= 15 − θ2 : −

√
15 < θ < +

√
15

which, when repeated periodically (bounce-bounce-bounce . . . ), becomes

z(θ) =
∑

n

[
15 − (θ − n

√
60 )2

]
· UnitStep[15 − (θ − n

√
60 )2] (60)

It is from (59) and (60) that Mathematica has generated the following figures:

1 2 3 4 5
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Figure 22: Here and in subsequent figures, the black curve derives
from (59), the red curve from its classical counterpart (60). The
θ-axis runs →, the z-axis runs ↑. We see that initially 〈z〉θ moves
along the classical parabola, but rebounds before it quite reaches the
reflective barrier z = 0. The first classical bounce occurs at time
θ =

√
15 = 3.87298.
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Figure 23: The oscillation of 〈z〉θ is seen over a longer initial
interval to diminish in both amplitude and frequency.



42 Classical/quantum motion in a uniform gravitational field: bouncing ball
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Figure 24: Over a still longer time interval 〈z〉θ is seen to become
nearly quiescent, and then to begin small oscillation at a higher
frequency. It becomes clear on this longer time base that the

time-averaged value of 〈z〉θ = 10
= 2

3 · 15
= classically expected value: see (9)
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Figure 25: Magnified central region of the preceding figure. The
higher frequency of the (phase-shifted) reborn oscillations invites
description as a kind of “frequency doubling.”
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Figure 26: In time the reborn oscillations grow in amplitude and
revert to something like their former amplitude/frequency relation.
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Figure 27: The oscillations of 〈z〉θ are seen over long times to
display semi-random (chaotic?) extinctions and rebirths. This is
a clear example of the collapse & revival phenomenon that has
recently been recognized to be a ubiquitous feature of semi-classical
quantum physics. The “quantum motion of the mean” shown here
is in marked contrast to what one might have anticipated from a
naive application of Ehrenfest’s theorem.

From Goodmanson’s relations (42) and (43) it follows that to obtain a
description of the motion of the second moment of position we have onto to
make the replacements

2
3zn �−→ 8

15z
2
n

2(−)n−p(zn − zp)−2 �−→ 24(−)n−p(zn − zp)−4
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in (59). That procedure gives

〈z2〉θ = 8
15

22∑
4

cncnz
2
n − 48c4

22∑
5

(−)n−4cn
cos[(zn − z4)θ]

(zn − z4)4
(61)

− 48c5
22∑
6

(−)n−5cn
cos[(zn − z5)θ]

(zn − z5)4
− · · · + 48c21c22

cos[(z22 − z21)θ]
(z22 − z21)4

But before we look to the graphical implications of (61) we pause to acquire
some benchmarks:

From the bouncer-adapted Gaussian

ψ(z, 0;α, σ) = 1√
σ
√

2π
e−

1
4

[ (z−α)
σ

]2

: α � σ > 0

we have
〈z0〉 = 1

〈z1〉 = α

〈z2〉 = α2 + σ2

(∆z)2 ≡ 〈(z − 〈z〉)2〉 = 〈z2〉 − 〈z〉2 = σ2

which in the case of immediate interest—the case ψ(z, 0; 15, 1.75)—should mark
the initial values

〈z1〉0 = 15

〈z2〉0 = 228.063

(∆z)20 = (1.75)2 = 3.063


 (62.1)

of such curves as we will be examining—as, indeed, 〈z1〉0 = 15 does already
mark the initial values of the curves shown in Figures 22, 23, 24, 26 & 27. Now
let the classical bouncer distribution (8) be written

Q(z) =
1

2
√
α(α− z)

and look to the associated classical moments 〈zp〉classical ≡
∫ α

0
zpQ(z) dz.

Enlarging slightly upon results reported already at (9), we have

〈z0〉classical = 1

〈z1〉classical = 2
3α

〈z2〉classical = 8
15α

2

(∆z)2classical = 4
45α

2

which at α = 15 become
〈z1〉∞ = 10

〈z2〉∞ = 120

(∆z)2∞ = 20


 (62.2)
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We have learned to anticipate that these are the numbers about which our
quantum curves will asymptotically dither (whence the subscript ∞) . . . as
already the curves in Figures 27–32 were seen to dither about 〈z1〉∞ = 10.

I present now a portfolio of figures—based upon (61)—which illustrate
aspects of the time-dependence of the second moment 〈z2〉θ, followed by a
second portfolio—based jointly upon (61) and (59)—showing the motion of the
“squared uncertainty” (∆z)2θ .

1 2 3 4 5

50

100

150

200

250

Figure 28: Early motion of 〈z2〉. From the fact that the initial
value is in agreement with (62.1) we conclude that the
truncations built into (61) do not introduce significant inaccuracies.
Here and in subsequent figures, the red curve is an amplified trace
of the classical motion zclassical(θ), and is intended to serve only as
a clock.
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Figure 29: Motion of 〈z2〉over the longer term. Compare Figure 28.
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20 40 60 80 100
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Figure 30: The motion of 〈z2〉“collapses” to the value anticipated
at (62.2).
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Figure 31: Collapse is followed by a “revival” even more distinct
than that exhibited by the first moment (Figure 26).
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Figure 32: The phase shift and frequency doubling encountered
already in Figure 25 show up also in the motion of 〈z2〉.
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Figure 33: Semi-chaotic motion of 〈z2〉 in the long term. This
ends the set of figures relating to the motion of 〈z2〉: we turn now
to the motion of (∆z)2.
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Figure 34: Initial motion of (∆z)2. The initial value conforms
to (62.1), and during the first part of the first bounce the growth of
(∆z)2 is plausibly hyperbolic, as for a particle in free fall.
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Figure 35 : Motion of (∆z)2 in the longer term. Note the details
coincident with the classical bounce points, other details that slightly
anticipate the top of the classical flight.
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Figure 36: The motion of (∆z)2 in the still longer term does not
display a conspicuous collapse, but does asymptotically dither about
the classical value given in (62.2).
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Figure 37: The lesson of Figure 36 persists in the still longer term.
For a free particle, as for a particle in unrestricted free fall, (∆z)2

grows without bound, but for a bouncer that growth is effectively
“clamped” . . . by the reflective barrier on one side, the gravitational
gradient on the other.

14. Deeper look into the origins of the collapse/revival phenomenon. My objective
here can be schematized

quantum motion of 〈z〉θ
= classical motion of z(θ) + quantum corrections

and is, more particularly, to construct an expanded account of the insightful
material that can be found already in Gea -Banacloche’s §§3 & 4.

We again assume the initial wavepacket to be Gaussian

ψ(z, 0) = 1√
σ
√

2π
e−

1
4

[z − α
σ

]2

with α so large, and σ so relatively small, that
∫ 0

−∞ |ψ(z, 0)|2 dz ≈ 0. If we
assume additionally that σ � 1 (i.e., that s � �, which is physically sensible)
then (50) can be approximated

cn ≈ 1√
σ
√

2π
Nn e−

1
4

[zn − α
σ

]2

It is remarkable that the expression on the right reproduces the design of ψ(z, 0)
itself,29 and evident that
• cn is maximized when zn ≈ α
• cn becomes negligible when zn differs from α by more than a few σ.

29 Can such a statement be established for more general (non-Gaussian)
wavepackets?


